TCC

Thermal Conductive Composite

Heat Management Composite

Our advanced composites consist of ceramics and thermo plastics, such as PPS(Polyphenylene Sulfide) which has excellent thermal and chemical properties.

[Features]

- Good insulation: volume resistivity ≥ 10⁹ Ω · cm
- Good thermal property: capable for reflow process
- flame retarcancy: V-0

*pick-up modules(CD,DVDetc)

*projector

*LCD panels

and more!!

Thermal Conductive Composite

What's Thermal Conductivity?

O Thermal conductivity, **K**, is the property of a material that indicates its ability to conduct heat.

Unit: W/m·K

thermal conductivity =

heat flow rate \times distance /(area \times \triangle t(temperature difference))

We focus to electric insulating thermal conductive composites with using our unique composite technologies which are accumulated with our other functional composite products.

[Applications]Pick-up modules for CD, DVDProjectors, Flat Panel DisplaysMotor devices and peripherals etc

Thermal Conductive Composite

Various Type of Fillers

Filler Type	<u>Good</u>	<u>Bad</u>				
Boron Nitride (BN series)	high thermal conductivityelectric isolation	very expensiveanisotropic property				
Alumina (Al ₂ O ₃ series)	shape selectivityelectric isolation	• hardness (molding abrasion)				
Ferrite (Ni-Zn,Mn-Zn systems)	• cheap • less-wearing	• less thermal • heavy				
others	(other ceramics, metals, carbons, Fibers etc)					

Especially, we are concentrating to develop Boron Nitride composite, because of its high thermal conductive property. ⇒10times the Alumina

Thermal Conductive Composite Properties of Our Products

Data of Commercial & Trial Products

			Ref.	Grade			Trial Grade				
Items	Unit	method	PPS※1	8861A61	8865A11	8885A63	8871A62	Binder: PPS			
			GF30%	ferrite	alumina	alumina	ferrite/almina	BN	BN	BN	Alumina
MFR	g/10min.	ASTM D1238	_	160*A	60*A	_	100*B	20*A	295*A	20* ^A	103*A
density	g/cm3	ASTM D792	1.4~1.6	2.25	2.05	2.81	2.56	1.88	1.80	1.82	2.81
flexural modulus	GPa	ASTM D790	ı	12.1	12.0	24.4	16.7	23.3	22.9	24.4	21.0
flexural strength	MPa	ASTM D790	ı	162	160	68	148	53	58	88	64
IZOD Impact strength	kJ/m2	ASTM 256(none notch)	ı	20.7	25.0	ı	14.3	3.0	4.1	6.3	7.1
volume resistance	Ω•cm	※ 2	-	≥10 ⁹	≥10 ⁹	≥10 ⁹	≥10 ⁹	≧10 ⁹	≥10 ⁹	≧10 ⁹	≥10 ⁹
thermal conductivity	W/m•K	Laser Flash Analysis※3	0.2	0.4	0.5	1.3	1.0	1.5~4.3	1.5	2.6	2.0~2.3

*A 330°C/5kg *B 310°C/5kg

[Notice] Data in the above table are typical.

- **X** 1 GlassFiber 30% contented PPS
- **X** 2 Advantest R8340A with R12702A chamber
- **※** 3 NETZSCH LFA-457